Bioinformatika




Pada pertemuan kali ini saya ingin membahas mengenai "Bioinformatika" sebelum mengetahui apa yang dibahas dalam Bioinformatika terlebih dahulu kita harus mengetahui tentang apa itu Bioinformatika:

Bioinformatika adalah ilmu yang mempelajari mengenai teknik komputasional untuk mengelola dan menganalisis informasi biologis. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya. Contoh topik utama bidang ini meliputi basis data untuk mengelola informasi biologis, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan bentuk struktur protein maupun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.

Setelah kita mengetahui apa yang dimaksud dengan Bioinformatika, selanjutnya kita pasti bertanya kapan si Bioinformatika dilahirkan???
Bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun demikian, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis) sudah dilakukan sejak tahun 1960-an. Kemajuan teknik biologi molekular dalam mengungkap sekuens biologis dari protein (sejak awal 1950-an) dan asam nukleat (sejak 1960-an) mengawali perkembangan basis data dan teknik analisis sekuens biologis. Basis data sekuens protein mulai dikembangkan pada tahun 1960-an di Amerika Serikat, sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan Jerman (pada European Molecular Biology Laboratory, Laboratorium Biologi Molekular Eropa). Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada 1980-an dan 1990-an, menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.
Perkembangan Internet juga mendukung berkembangnya bioinformatika. Basis data bioinformatika yang terhubung melalui Internet memudahkan ilmuwan mengumpulkan hasil sekuensing ke dalam basis data tersebut maupun memperoleh sekuens biologis sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui Internet memudahkan ilmuwan mengakses program-program tersebut dan kemudian memudahkan pengembangannya.

Sebenarnya Bioinformatika secara kusus terbagi menjadi 2 yaitu:
Bioinformatika "klasik"
Sebagian besar ahli Biologi mengistilahkan ‘mereka sedang melakukan Bioinformatika’ ketika mereka sedang menggunakan komputer untuk menyimpan, melihat atau mengambil data, menganalisa atau memprediksi komposisi atau struktur dari biomolekul. Ketika kemampuan komputer menjadi semakin tinggi maka proses yang dilakukan dalam Bioinformatika dapat ditambah dengan melakukan simulasi. Yang termasuk biomolekul diantaranya adalah materi genetik dari manusia, asam nukleat dan produk dari gen manusia, yaitu protein.
Bioinformatika "baru"
Salah satu pencapaian besar dalam metode Bioinformatika adalah selesainya proyek pemetaan genom manusia (Human Genome Project). Selesainya proyek raksasa tersebut menyebabkan bentuk dan prioritas dari riset dan penerapan Bioinformatika berubah. Secara umum dapat dikatakan bahwa proyek tersebut membawa perubahan besar pada sistem hidup kita, sehingga sering disebutkan oleh ahli biologi bahwa kita saat ini berada di masa pascagenom. Setelah memiliki beberapa genom yang utuh maka kita dapat mencari perbedaan dan persamaan di antara gen-gen dari spesies yang berbeda. Dari studi perbandingan antara gen-gen tersebut dapat ditarik kesimpulan tertentu mengenai spesies-spesies dan secara umum mengenai evolusi. Jenis cabang ilmu ini sering disebut sebagai perbandingan genom ( comparative genomics ).
Sekarang ada teknologi yang didisain untuk mengukur jumlah relatif dari kopi/cetakan sebuah pesan genetik (level dari ekspresi genetik) pada beberapa tingkatan yang berbeda pada perkembangan atau penyakit atau pada jaringan yang berbeda. Teknologi tersebut, contohnya seperti DNA microarrays akan semakin penting. Akibat yang lain, secara langsung, adalah cara dalam skala besar untuk mengidentifikasi fungsi-fungsi dan keterkaitan dari gen (contohnya metode yeast twohybrid) akan semakin tumbuh secara signifikan dan bersamanya akan mengikuti Bioinformatika yang berkaitan langsung dengan kerja fungsi genom (functional genomics ). Akan ada perubahan besar dalam penekanan dari gen itu sendiri ke hasil-hasil dari gen. Yang pada akhirnya akan menuntun ke: usaha untuk mengkatalogkan semua aktivitas dan karakteristik interaksi antara semua hasil-hasil dari gen (pada manusia) yang disebut proteomics; usaha untuk mengkristalisasi dan memprediksikan struktur-struktur dari semua protein (pada manusia) yang disebut structural genomics.

Setelah kita mengetahui sedikit mengenai perbedan Bioinformatika yang klasik dengan yang baru selanjutnya cababng-cabang yang terkait dengan Bioinformatika:
Biophysics

Biologi molekul sendiri merupakan pengembangan yang lahir dari biophysics. Biophysics adalah sebuah bidang interdisipliner yang mengaplikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society). Sesuai dengan definisi di atas, bidang ini merupakan suatu bidang yang luas. Namun secara langsung disiplin ilmu ini terkait dengan Bioinformatika karena penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur membutuhkan penggunaan TI.
Computational Biology
Computational biology merupakan bagian dari Bioinformatika (dalam arti yang paling luas) yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel. Tak dapat dielakkan bahwa Biologi Molekul cukup penting dalam computational biology, namun itu bukanlah inti dari disiplin ilmu ini. Pada penerapan computational biology, model-model statistika untuk fenomena biologi lebih disukai dipakai dibandingkan dengan model sebenarnya. Dalam beberapa hal cara tersebut cukup baik mengingat pada kasus tertentu eksperimen langsung pada fenomena biologi cukup sulit. Tidak semua dari computational biology merupakan Bioinformatika, seperti contohnya Model Matematika bukan merupakan Bioinformatika, bahkan meskipun dikaitkan dengan masalah biologi.
Medical Informatics Menurut Aamir Zakaria [ZAKARIA2004] Pengertian dari medical informatics adalah "sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan, dan implementasi dari struktur dan algoritma untuk meningkatkan komunikasi, pengertian dan manajemen informasi medis." Medical informatics lebih memperhatikan struktur dan algoritma untuk pengolahan data medis, dibandingkan dengan data itu sendiri. Disiplin ilmu ini, untuk alasan praktis, kemungkinan besar berkaitan dengan data-data yang didapatkan pada level biologi yang lebih "rumit" yaitu informasi dari sistem-sistem superselular, tepat pada level populasi—di mana sebagian besar dari Bioinformatika lebih memperhatikaninformasi dari sistem dan struktur biomolekul dan selular.
Cheminformatics
Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute's Sixth Annual Cheminformatics conference). Pengertian disiplin ilmu yang disebutkan di atas lebih merupakan identifikasi dari salah satu aktivitas yang paling populer dibandingkan dengan berbagai bidang studi yang mungkin ada di bawah bidang ini. Salah satu contoh penemuan obat yang paling sukses sepanjang sejarah adalah penisilin, dapat menggambarkan cara untuk menemukan dan mengembangkan obat-obatan hingga sekarang meskipun terlihat aneh. Cara untuk menemukan dan mengembangkan obat adalah hasil dari kesempatan, observasi, dan banyak proses kimia yang intensif dan lambat. Sampai beberapa waktu yang lalu, disain obat dianggap harus selalu menggunakan kerja yang intensif, proses uji dan gagal (trial-error process). Kemungkinan penggunaan TI untuk merencanakan secara cerdas dan dengan mengotomatiskan proses-proses yang terkait dengan sintesis kimiawi dari komponenkomponen pengobatan merupakan suatu prospek yang sangat menarik bagi ahli kimia dan ahli biokimia. Penghargaan untuk menghasilkan obat yang dapat dipasarkan secara lebih cepat sangatlah besar, sehingga target inilah yang merupakan inti dari cheminformatics. Ruang lingkup akademis dari cheminformatics ini sangat luas. Contoh bidang minatnya antara lain: Synthesis Planning, Reaction and Structure Retrieval, 3-D Structure Retrieval, Modelling, Computational Chemistry, Visualisation Tools and Utilities.
Genomics
Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang
representatif.
Mathematical Biology
Mathematical biology lebih mudah dibedakan dengan Bioinformatika daripada computational biology dengan Bioinformatika. Mathematical biology juga menangani
masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah
tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware. Bahkan metode yang dipakai tidak perlu "menyelesaikan" masalah apapun; dalam mathematical biology bisa dianggap beralasan untuk mempublikasikan sebuah hasil yang hanya menyatakan bahwa suatu masalah biologi berada pada kelas umum tertentu. Menurut Alex Kasman [KASMAN2004] Secara umum mathematical biology melingkupi semua ketertarikan teoritis yang tidak perlu merupakan sesuatu yang beralgoritma, dan tidak perlu dalam bentuk molekul, dan tidak perlu berguna dalam menganalisis data yang terkumpul.
Proteomics
Istilah proteomics pertama kali digunakan untuk menggambarkan himpunan dari protein-protein yang tersusun (encoded) oleh genom. Ilmu yang mempelajari proteome, yang disebut proteomics, pada saat ini tidak hanya memperhatikan semua protein di dalam sel yang diberikan, tetapi juga himpunan dari semua bentuk isoform dan modifikasi dari semua protein, interaksi diantaranya, deskripsi struktural dari proteinprotein dan kompleks-kompleks orde tingkat tinggi dari protein, dan mengenai masalah tersebut hampir semua pasca genom. Michael J. Dunn [DUNN2004], Pemimpin Redaksi dari Proteomicsmendefiniskan kata "proteome" sebagai: "The PROTEin complement of the genOME". Dan mendefinisikan proteomics berkaitan dengan: "studi kuantitatif dan kualitatif dari ekspresi gen di level dari protein-protein fungsional itu sendiri". Yaitu: "sebuah antarmuka antara biokimia protein dengan biologi molekul". Mengkarakterisasi sebanyak puluhan ribu protein-protein yang dinyatakan dalam sebuah tipe sel yang diberikan pada waktu tertentu apakah untuk mengukur berat molekul atau nilai-nilai isoelektrik protein-protein tersebut melibatkan tempat penyimpanan dan perbandingan dari data yang memiliki jumlah yang sangat besar, takterhindarkan lagi akan memerlukan Bioinformatika.
Pharmacogenomics
Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada identifikasi dari target-target obat. Contohnya meliputi menjaring semua genom untuk penerima yang potensial dengan menggunakan cara Bioinformatika, atau dengan menyelidiki bentuk pola dari ekspresi gen di dalam baik patogen maupun induk selama terjadinya infeksi, atau maupun dengan memeriksa karakteristik pola-pola ekspresi yang ditemukan dalam tumor atau contoh dari pasien untuk kepentingan diagnosa (kemungkinan untuk mengejar target potensial terapi kanker).
Istilah pharmacogenomics digunakan lebih untuk urusan yang lebih "trivial" tetapi dapat diargumentasikan lebih berguna-- dari aplikasi pendekatan Bioinformatika pada pengkatalogan dan pemrosesan informasi yang berkaitan dengan ilmu Farmasi dan Genetika, untuk contohnya adalah pengumpulan informasi pasien dalam database.
Pharmacogenetics
Tiap individu mempunyai respon yang berbeda-beda terhadap berbagai pengaruh obat; sebagian ada yang positif, sebagian ada yang sedikit perubahan yang tampak pada kondisi mereka dan ada juga yang mendapatkan efek samping atau reaksi alergi.
Sebagian dari reaksi-reaksi ini diketahui mempunyai dasar genetik. Pharmacogenetics adalah bagian dari pharmacogenomics yang menggunakan metode
genomik/Bioinformatika untuk mengidentifikasi hubungan-hubungan genomik, contohnya SNP (Single Nucleotide Polymorphisms), karakteristik dari profil respons pasien tertentu dan menggunakan informasi-informasi tersebut untuk memberitahu administrasi dan pengembangan terapi pengobatan. Secara menakjubkan pendekatan tersebut telah digunakan untuk "menghidupkan kembali" obat-obatan yang sebelumnya dianggap tidak efektif, namun ternyata diketahui manjur pada sekelompok pasien tertentu. Disiplin ilmu ini juga dapat digunakan untuk mengoptimalkan dosis kemoterapi pada pasien-pasien tertentu. Gambaran dari sebagian bidang-bidang yang terkait dengan Bioinformatika di atas memperlihatkan bahwa Bioinformatika mempunyai ruang lingkup yang sangat luas dan mempunyai peran yang sangat besar dalam bidangnya. Bahkan pada bidang pelayanan kesehatan Bioinformatika menimbulkan disiplin ilmu baru yang menyebabkan peningkatan pelayanan kesehatan.

Selanjutnya implementasi Bioinformatika digunakan untuk bidang-bidang seperti dibawah ini: Bioinformatika dalam Bidang Klinis
Bioinformatika dalam bidang klinis sering disebut sebagai informatika klinis (clinical informatics). Aplikasi dari informatika klinis ini berbentuk manajemen data-data klinis dari pasien melalui Electrical Medical Record (EMR) yang dikembangkan oleh Clement J. McDonald dari Indiana University School of Medicine pada tahun 1972. McDonald pertama kali mengaplikasikan EMR pada 33 orang pasien penyakit gula (diabetes). Sekarang EMR ini telah diaplikasikan pada berbagai penyakit. Data yang disimpan meliputi data analisa diagnosa laboratorium, hasil konsultasi dan saran, fotorontgen, ukuran detak jantung, dan lain lain. Dengan data ini dokter akan bisa menentukan obat yang sesuai dengan kondisi pasien tertentu dan lebih jauh lagi, dengan dibacanya genom manusia, akan memungkinkan untuk mengetahui penyakit genetik seseorang, sehingga penanganan terhadap pasien menjadi lebih akurat.
Bioinformatika untuk Identifikasi Agent Penyakit Baru
Bioinformatika juga menyediakan tool yang sangat penting untuk identifikasi agent penyakit yang belum dikenal penyebabnya. Banyak sekali penyakit baru yang muncul dalam dekade ini, dan diantaranya yang masih hangat adalah SARS (Severe Acute Respiratory Syndrome). Pada awalnya, penyakit ini diperkirakan disebabkan oleh virus influenza karena gejalanya mirip dengan gejala pengidap influenza. Akan tetapi ternyata dugaan ini salah karena virus influenza tidak terisolasi dari pasien. Perkirakan lain penyakit ini disebabkan oleh bakteri Candida karena bakteri ini terisolasi dari beberapa pasien. Tapi perkiraan ini juga salah. Akhirnya ditemukan bahwa dari sebagian besar pasien SARS terisolasi virus Corona jika dilihat dari morfologinya. Sekuen genom virus ini kemudian dibaca dan dari hasil analisa dikonfirmasikan bahwa penyebab SARS adalah virus Corona yang telah berubah (mutasi) dari virus Corona yang ada selama ini. Dalam rentetan proses ini, Bioinformatika memegang peranan penting. Pertama pada proses pembacaan genom virus Corona. Karena di database seperti GenBank, EMBL (European Molecular Biology Laboratory), dan DDBJ (DNA Data Bank of Japan) sudah tersedia data sekuen beberapa virus Corona, yang bisa digunakan untuk mendisain primer yang digunakan untuk amplifikasi DNA virus SARS ini. Software untuk mendisain primer juga tersedia, baik yang gratis maupun yang komersial. Untuk yang komersial ada Primer Disainer yang dikembangkan oleh Scientific & Education Software, dan software-software untuk analisa DNA lainnya seperti Sequencher (GeneCodes Corp.), SeqMan II (DNA STAR Inc.), Genetyx (GENETYX Corp.), DNASIS (HITACHI Software), dan lain lain. Kedua pada proses mencari kemiripan sekuen (homology alignment) virus yang didapatkan dengan virus lainnya. Dari hasil analisa virus SARS diketahui bahwa genom virus Corona penyebab SARS berbeda dengan virus Corona lainnya. Perbedaan ini diketahui dengan menggunakan homology alignment dari sekuen virus SARS. Selanjutnya, Bioinformatika juga berfungsi untuk analisa posisi sejauh mana suatu virus berbeda dengan virus lainnya.
Bioinformatika untuk Diagnosa Penyakit Baru
Untuk menangani penyakit baru diperlukan diagnosa yang akurat sehingga dapat dibedakan dengan penyakit lain. Diagnosa yang akurat ini sangat diperlukan untuk pemberian obat dan perawatan yang tepat bagi pasien. Ada beberapa cara untuk mendiagnosa suatu penyakit, antara lain: isolasi agent penyebab penyakit tersebut dan analisa morfologinya, deteksi antibodi yang dihasilkan dari infeksi dengan teknik enzyme-linked immunosorbent assay (ELISA), dan deteksi gen dari agent pembawa penyakit tersebut dengan Polymerase Chain Reaction (PCR). Teknik yang banyak dan lazim dipakai saat ini adalah teknik PCR. Teknik ini sederhana, praktis dan cepat. Yang penting dalam teknik PCR adalah disain primer untuk amplifikasi DNA, yang memerlukan data sekuen dari genom agent yang bersangkutan dan software seperti yang telah diuraikan di atas. Disinilah Bioinformatika memainkan peranannya. Untuk agent yang mempunyai genom RNA, harus dilakukan reverse transcription (proses sintesa DNA dari RNA) terlebih dahulu dengan menggunakan enzim reverse transcriptase. Setelah DNA diperoleh baru dilakukan PCR. Reverse transcription dan PCR ini bisa dilakukan sekaligus dan biasanya dinamakan RT-PCR. Teknik PCR ini bersifat kualitatif, oleh sebab itu sejak beberapa tahun yang lalu dikembangkan teknik lain, yaitu Real Time PCR yang bersifat kuantitatif. Dari hasil Real Time PCR ini bisa ditentukan kuantitas suatu agent di dalam tubuh seseorang, sehingga bisa dievaluasi tingkat emergensinya. Pada Real Time PCR ini selain primer diperlukan probe yang harus didisain sesuai dengan sekuen agent yang bersangkutan. Di sini juga diperlukan software atau program Bioinformatika.
Bioinformatika untuk Penemuan Obat
Cara untuk menemukan obat biasanya dilakukan dengan menemukan zat/senyawa yang dapat menekan perkembangbiakan suatu agent penyebab penyakit. Karena perkembangbiakan agent tersebut dipengaruhi oleh banyak faktor, maka faktor-faktor inilah yang dijadikan target. Diantaranya adalah enzim-enzim yang diperlukan untuk perkembangbiakan suatu agent Mula-mula yang harus dilakukan adalah analisa struktur dan fungsi enzim-enzim tersebut. Kemudian mencari atau mensintesa zat/senyawa yang dapat menekan fungsi dari enzim-enzim tersebut. Analisa struktur dan fungsi enzim ini dilakukan dengan cara mengganti asam amino tertentu dan menguji efeknya. Analisa penggantian asam amino ini dahulu dilakukan secara random sehingga memerlukan waktu yang lama. Setelah Bioinformatika berkembang, data-data protein yang sudah dianalisa bebas diakses oleh siapapun, baik data sekuen asam amino-nya seperti yang ada di SWISS-PROT maupun struktur 3D-nya yang tersedia di Protein Data Bank (PDB) Dengan database yang tersedia ini, enzim yang baru ditemukan dapat dibandingkan sekuen asam amino-nya, sehingga bisa diperkirakan asam amino yang berperan untuk aktivitas (active site) dan kestabilan enzim tersebut. Setelah asam amino yang berperan sebagai active site dan kestabilan enzim tersebut ditemukan, kemudian dicari atau disintesa senyawa yang dapat berinteraksi dengan asam amino tersebut. Dengan data yang ada di PDB, maka dapat dilihat struktur 3D suatu enzim termasuk active site-nya, sehingga bisa diperkirakan bentuk senyawayang akan berinteraksi dengan active site tersebut. Dengan demikian, kita cukup mensintesa senyawa yang diperkirakan akan berinteraksi, sehingga obat terhadap suatu penyakit akan jauh lebih cepat ditemukan. Cara ini dinamakan “docking” dan telah banyak digunakan oleh perusahaan farmasi untuk penemuan obat baru. Meskipun dengan Bioinformatika ini dapat diperkirakan senyawa yang berinteraksi dan menekan fungsi suatu enzim, namun hasilnya harus dikonfirmasi dahulu melalui eksperimen di laboratorium. Akan tetapi dengan Bioinformatika, semua proses ini bisa dilakukan lebih cepat sehingga lebih efisien baik dari segi waktu maupun finansial. Tahun 1997, Ian Wilmut dari Roslin Institute dan PPL Therapeutics Ltd, Edinburgh, Skotlandia, berhasil mengklon gen manusia yang menghasilkan faktor IX (faktor pembekuan darah), dan memasukkan ke kromosom biri-biri. Diharapkan biri-biri yang selnya mengandung gen manusia faktor IX akan menghasilkan susu yang mengandung faktor pembekuan darah. Jika berhasil diproduksi dalam jumlah banyak maka faktor IX yang diisolasi dari susu harganya bisa lebih murah untuk membantu para penderita hemofilia.
Pengembangan Vaksin Hepatitis B Rekombinan
Lembaga Biologi Molekul Eijkman bekerja sama dengan PT Bio Farma (BUMN Departemen Kesehatan yang memproduksi vaksin) sejak tahun 1999 mengembangkan vaksin Hepatitis B rekombinan, yaitu vaksin yang dibuat lewat rekayasa genetika. Selain itu Lembaga Eijkman juga bekerja sama dengan PT Diagnosia Dipobiotek untuk mengembangkan kit diagnostik.
Meringankan Kelumpuhan dengan Rekayasa RNA
Kasus kelumpuhan distrofi (Duchenne Muscular Dystrophy) yang menurun kini dapat dikurangi tingkat keparahannya dengan terapi gen. Kelumpuhan ini akibat ketidaknormalan gen distrofin pada kromosom X sehingga hanya diderita anak laki-laki. Diperkirakan satu dari 3.500 pria di dunia mengalami kelainan ini. Dengan memperbaiki susunan ekson atau bagian penyusun RNA gen tersebut pada hewan percobaan tikus, terbukti mengurangi tingkat kelumpuhan saat pertumbuhannya menjadi dewasa. Gen distrofin pada kasus kelumpuhan paling sering disebabkan oleh delesi atau hilangnya beberapa ekson pada gen tersebut. Normalnya pada gen atau DNA distrofin terdapat 78 ekson. Diperkirakan 65 persen pasien penderita DMD mengalami delesi dalam jumlah besar dalam gen distrofinnya. Kasus kelumpuhan ini dimulai pada otot prosima seperti pangkal paha dan betis. Dengan bertambahnya usia kelumpuhan akan meluas pada bagian otot lainnya hingga ke leher. Karena itu dalam kasus kelumpuhan yang berlanjut dapat berakibat kematian. Teknologi rekayasa RNA seperti proses penyambungan (slicing) ekson dalam satu rangkaian terbukti dapat mengoreksi mutasi DMD. Bila bagian ekson yang masih ada disambung atau disusun ulang, terjadi perubahan asam amino yang membentuk protein. Molekul RNA mampu mengenali molekul RNA lainnya dan melekat dengannya.


Jadi kesimpulan dari Bioinformasi adalah: Bioinformatika adalah software dan didukung oleh kesediaan internet dan server WorldWide Web (WWW). Dengan Bioinformatika, data-data yang dihasilkan dari proyek genom dapat disimpan dengan teratur dalam waktu yang singkat dengan tingkat akurasi yang tinggi serta sekaligus dianalisa dengan program-program yang dibuat untuk tujuan tertentu dan Bioinformatika memberikan program-program yang diperlukan untuk proses pembacaan genom.




Refrensi: http://id.wikipedia.org/wiki/Bioinformatika www.komputasi.lipi.go.id/data/1014224403/data/1110939555.pdf http://kambing.ui.ac.id/bebas/v06/Kuliah/SistemOperasi/2003/50/Bioinformatika.pdf http://bioinformatika-q.blogspot.com/ http://bioinformatics.org per 20 Januari 2004 http://www.kompas.com per 15 Januari 2004 http://www.biotek-indonesia.net per 20 Januari 2004 http://www.pasteur.fr/externe per 20 Januari 2004 http://www.faqs.org/faqs/medicalinformatics-faq/ per 20 Januari 2004 http://math.cofc.edu/faculty/kasman/ per 20 Januari 2004 http://www.wiley.co.uk/wileychi/genomics/proteomics.html per 20 Januari 2004

Komentar

Postingan populer dari blog ini

Koneksi Internet Rumah

DISTRO LINUX SUSE

TUGAS SOFTSKILL PERTEMUAN PERTAMA PENGANTAR KOMPUTASI MODERN